203 research outputs found

    Gas kinematics around filamentary structures in the Orion B cloud

    Get PDF
    Context. Understanding the initial properties of star-forming material and how they affect the star formation process is key. From an observational point of view, the feedback from young high-mass stars on future star formation properties is still poorly constrained. Aims. In the framework of the IRAM 30m ORION-B large program, we obtained observations of the translucent (2 ≤ AV < 6 mag) and moderately dense gas (6 ≤ AV < 15 mag), which we used to analyze the kinematics over a field of 5 deg2 around the filamentary structures. Methods. We used the Regularized Optimization for Hyper-Spectral Analysis (ROHSA) algorithm to decompose and de-noise the C 18 O(1−0) and 13CO(1−0) signals by taking the spatial coherence of the emission into account. We produced gas column density and mean velocity maps to estimate the relative orientation of their spatial gradients. Results. We identified three cloud velocity layers at different systemic velocities and extracted the filaments in each velocity layer. The filaments are preferentially located in regions of low centroid velocity gradients. By comparing the relative orientation between the column density and velocity gradients of each layer from the ORION-B observations and synthetic observations from 3D kinematic toy models, we distinguish two types of behavior in the dynamics around filaments: (i) radial flows perpendicular to the filament axis that can be either inflows (increasing the filament mass) or outflows and (ii) longitudinal flows along the filament axis. The former case is seen in the Orion B data, while the latter is not identified. We have also identified asymmetrical flow patterns, usually associated with filaments located at the edge of an H II region. Conclusions. This is the first observational study to highlight feedback from H II regions on filament formation and, thus, on star formation in the Orion B cloud. This simple statistical method can be used for any molecular cloud to obtain coherent information on the kinematics

    Deep learning denoising by dimension reduction: Application to the ORION-B line cubes

    Get PDF
    Context. The availability of large bandwidth receivers for millimeter radio telescopes allows the acquisition of position-position-frequency data cubes over a wide field of view and a broad frequency coverage. These cubes contain much information on the physical, chemical, and kinematical properties of the emitting gas. However, their large size coupled with inhomogenous signal-to-noise ratio (SNR) are major challenges for consistent analysis and interpretation.Aims. We search for a denoising method of the low SNR regions of the studied data cubes that would allow to recover the low SNR emission without distorting the signals with high SNR.Methods. We perform an in-depth data analysis of the 13 CO and C 17 O (1 -- 0) data cubes obtained as part of the ORION-B large program performed at the IRAM 30m telescope. We analyse the statistical properties of the noise and the evolution of the correlation of the signal in a given frequency channel with that of the adjacent channels. This allows us to propose significant improvements of typical autoassociative neural networks, often used to denoise hyperspectral Earth remote sensing data. Applying this method to the 13 CO (1 -- 0) cube, we compare the denoised data with those derived with the multiple Gaussian fitting algorithm ROHSA, considered as the state of the art procedure for data line cubes.Results. The nature of astronomical spectral data cubes is distinct from that of the hyperspectral data usually studied in the Earth remote sensing literature because the observed intensities become statistically independent beyond a short channel separation. This lack of redundancy in data has led us to adapt the method, notably by taking into account the sparsity of the signal along the spectral axis. The application of the proposed algorithm leads to an increase of the SNR in voxels with weak signal, while preserving the spectral shape of the data in high SNR voxels.Conclusions. The proposed algorithm that combines a detailed analysis of the noise statistics with an innovative autoencoder architecture is a promising path to denoise radio-astronomy line data cubes. In the future, exploring whether a better use of the spatial correlations of the noise may further improve the denoising performances seems a promising avenue. In addition

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial

    Get PDF
    Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt

    Le patrimoine de la nébuleuse protosolaire : le rapport isotopique de l'azote des nuages interstellaires à des systèmes planétaires

    No full text
    L'existence de molécules interstellaires soulève une question, ces molécules sont-elles les mêmes molécules que nous voyons dans le système Solaire aujourd'hui ? C'est une question toujours ouverte qui implique des conséquences profondes. Il est possible d’éclaircir cette question en étant capables de retracer l'héritage d'un groupe de molécules chimiquement liées, ce que nous appelons un réservoir. Le meilleur outil pour retracer l'héritage des réservoirs sont les rapports isotopiques. L'élément qui montre les plus grandes variations du rapport isotopique dans le système Solaire est l'azote. Ces variations indiquent que le rapport isotopique de l'azote est sensible aux conditions physiques de la formation des étoiles.L'objectif principal de cette thèse est d'identifier les réservoirs d'azote à différents étapes de la formation des étoiles et des planètes. La première étape de cette entreprise était d'identifier le rapport isotopique de la masse principal d'azote du milieu interstellaire local aujourd'hui.Cela a été déterminé égale à 323 ± 30 à partir du rapport CN/C 15 N mesuré dans le disque protoplanétaire autour de TW Hya. Parallèlement à cela, nous avons également mesuré un rapport HCN/HC 15 N=128 ± 36 dans le disque protoplanétaire autour de MWC 480. Ces rapports isotopiques très distinctes mesurées sur les disques protoplanétaires sont une indication claire de la présence d'au moins deux réservoirs d'azote dans les disques protoplanétaires. La façon dont ces réservoirs se séparent est cependant inconnue. Cela pourrait peut-être se produire en raison de réactions de fractionnement chimique ayant lieu dans les cœurs prestellaires. Nous avions donc comme objectif d'obtenir une mesure précise et directe du rapport isotopique de l'azote des molécules d'HCN dans le cœur prestellaire L1498.Pour obtenir cette mesure, l'obstacle le plus important à surmonter était due aux anomalies hyperfines des molécules d'HCN. Ces anomalies hyperfines sont induites par le chevauchement des composants hyperfins. Ceci sont particulièrement sensibles à la densité de colonne d'HCN, mais aussi au champ de vitesses et aux largeurs de raies. Ainsi les anomalies hyperfines sont un outil de mesure de l'abondance d'HCN permettant aussi de sonder la cinématique des cœurs prestellaires.Pour reproduire avec précision les anomalies hyperfines, et ainsi mesurer des densités de colonne précises d'HCN, nous avions besoin d'explorer un espace de paramètres dégénéré de 15 dimensions. Pour minimiser les dégénérescences nous avons obtenu un profil de densité basé sur des cartes du continuum de L1498. Ceci permettant de réduire à 12 dimensions l'espace des paramètres. L'exploration de cet espace de paramètre a été fait grâce à l'utilisation d'un méthode de minimisation MCMC. Grâce à cette exploration, nous avons obtenu HCN/HC 15 N = 338 ± 28 et HCN/H 13 CN = 45 ± 3. Les incertitudes sur ces valeurs sont limités par les erreurs de calibration et sont dé-terminés de manière non arbitraire par le méthode MCMC. Les implications de ces résultats sont discutées dans le chapitre de conclusion,où nous présentons également quelques perspectives sur l'avenir.The existence of interstellar molecules raises the question, are thesemolecules the same molecules we see on the Solar system today? Thisis still an open question with far reaching consequences. Some lightmay be shed on this issue if we are able to trace the heritage of agroup of chemically linked molecules, a so-called reservoir. The besttool to trace the heritage of reservoirs are isotopic ratios. The elementthat shows the largest isotopic ratio variations in the Solar system isnitrogen. For this is an indication that the isotopic ratio of nitrogen issensitive to the physical conditions during star formation.The main objective of this thesis is to identify the reservoirs of ni-trogen at different stages of star and planet formation. The first stepin this endeavour was to identify the isotopic ratio of the bulk of ni-trogen in the local ISM today. This was determined to be 323 ± 30from the CN/C 15 N ratio in the protoplanetary disk around TW Hya.Along with it we also measured the HCN/HC 15 N= 128 ± 36 in theprotoplanetary disk around MWC 480. This very distinct nitrogen iso-topic ratios on protoplanetary disks are a clear indication that thereare at least two reservoirs of nitrogen in protoplanetary disks. Howthese reservoirs get separated is however unknown. This could pos-sibly happen due to chemical fractionation reactions taking place inprestellar cores. We therefore aimed to obtain an accurate direct mea-surement of the nitrogen isotopic ratio of HCN in the prestellar coreL1498.To obtain this measurement the most important hurdle to overcomewere the hyperfine anomalies of HCN. These hyperfine anomaliesarise due to the overlap of hyperfine components. They are especiallysensitive to the column density of HCN, but also to the velocity fieldand line widths. Thus hyperfine anomalies are a tool to measure theabundance of HCN and to probe the kinematics of prestellar cores.To accurately reproduce the hyperfine anomalies, and thus mea-sure accurate column densities for HCN, we needed to explore adegenerate parameter space of 15 dimensions. To minimise the de-generacies we have derived a density profile based on continuummaps of L1498. This reduced the parameter space to 12 dimensions.The exploration of this parameter space was done through the useof a MCMC minimisation method. Through this exploration we ob-tained HCN/HC 15 N = 338 ± 28 and HCN/H 13 CN = 45 ± 3. Theuncertainties on these values are calibration limited and determinednon-arbitrarily by the MCMC method. Implications of these resultsare discussed in the concluding chapter, where we also present somefuture perspectives

    The protosolar nebula heritage : the nitrogen isotopic ratio from interstellar clouds to planetary systems

    No full text
    The existence of interstellar molecules raises the question, are thesemolecules the same molecules we see on the Solar system today? Thisis still an open question with far reaching consequences. Some lightmay be shed on this issue if we are able to trace the heritage of agroup of chemically linked molecules, a so-called reservoir. The besttool to trace the heritage of reservoirs are isotopic ratios. The elementthat shows the largest isotopic ratio variations in the Solar system isnitrogen. For this is an indication that the isotopic ratio of nitrogen issensitive to the physical conditions during star formation.The main objective of this thesis is to identify the reservoirs of ni-trogen at different stages of star and planet formation. The first stepin this endeavour was to identify the isotopic ratio of the bulk of ni-trogen in the local ISM today. This was determined to be 323 ± 30from the CN/C 15 N ratio in the protoplanetary disk around TW Hya.Along with it we also measured the HCN/HC 15 N= 128 ± 36 in theprotoplanetary disk around MWC 480. This very distinct nitrogen iso-topic ratios on protoplanetary disks are a clear indication that thereare at least two reservoirs of nitrogen in protoplanetary disks. Howthese reservoirs get separated is however unknown. This could pos-sibly happen due to chemical fractionation reactions taking place inprestellar cores. We therefore aimed to obtain an accurate direct mea-surement of the nitrogen isotopic ratio of HCN in the prestellar coreL1498.To obtain this measurement the most important hurdle to overcomewere the hyperfine anomalies of HCN. These hyperfine anomaliesarise due to the overlap of hyperfine components. They are especiallysensitive to the column density of HCN, but also to the velocity fieldand line widths. Thus hyperfine anomalies are a tool to measure theabundance of HCN and to probe the kinematics of prestellar cores.To accurately reproduce the hyperfine anomalies, and thus mea-sure accurate column densities for HCN, we needed to explore adegenerate parameter space of 15 dimensions. To minimise the de-generacies we have derived a density profile based on continuummaps of L1498. This reduced the parameter space to 12 dimensions.The exploration of this parameter space was done through the useof a MCMC minimisation method. Through this exploration we ob-tained HCN/HC 15 N = 338 ± 28 and HCN/H 13 CN = 45 ± 3. Theuncertainties on these values are calibration limited and determinednon-arbitrarily by the MCMC method. Implications of these resultsare discussed in the concluding chapter, where we also present somefuture perspectives.L'existence de molécules interstellaires soulève une question, ces molécules sont-elles les mêmes molécules que nous voyons dans le système Solaire aujourd'hui ? C'est une question toujours ouverte qui implique des conséquences profondes. Il est possible d’éclaircir cette question en étant capables de retracer l'héritage d'un groupe de molécules chimiquement liées, ce que nous appelons un réservoir. Le meilleur outil pour retracer l'héritage des réservoirs sont les rapports isotopiques. L'élément qui montre les plus grandes variations du rapport isotopique dans le système Solaire est l'azote. Ces variations indiquent que le rapport isotopique de l'azote est sensible aux conditions physiques de la formation des étoiles.L'objectif principal de cette thèse est d'identifier les réservoirs d'azote à différents étapes de la formation des étoiles et des planètes. La première étape de cette entreprise était d'identifier le rapport isotopique de la masse principal d'azote du milieu interstellaire local aujourd'hui.Cela a été déterminé égale à 323 ± 30 à partir du rapport CN/C 15 N mesuré dans le disque protoplanétaire autour de TW Hya. Parallèlement à cela, nous avons également mesuré un rapport HCN/HC 15 N=128 ± 36 dans le disque protoplanétaire autour de MWC 480. Ces rapports isotopiques très distinctes mesurées sur les disques protoplanétaires sont une indication claire de la présence d'au moins deux réservoirs d'azote dans les disques protoplanétaires. La façon dont ces réservoirs se séparent est cependant inconnue. Cela pourrait peut-être se produire en raison de réactions de fractionnement chimique ayant lieu dans les cœurs prestellaires. Nous avions donc comme objectif d'obtenir une mesure précise et directe du rapport isotopique de l'azote des molécules d'HCN dans le cœur prestellaire L1498.Pour obtenir cette mesure, l'obstacle le plus important à surmonter était due aux anomalies hyperfines des molécules d'HCN. Ces anomalies hyperfines sont induites par le chevauchement des composants hyperfins. Ceci sont particulièrement sensibles à la densité de colonne d'HCN, mais aussi au champ de vitesses et aux largeurs de raies. Ainsi les anomalies hyperfines sont un outil de mesure de l'abondance d'HCN permettant aussi de sonder la cinématique des cœurs prestellaires.Pour reproduire avec précision les anomalies hyperfines, et ainsi mesurer des densités de colonne précises d'HCN, nous avions besoin d'explorer un espace de paramètres dégénéré de 15 dimensions. Pour minimiser les dégénérescences nous avons obtenu un profil de densité basé sur des cartes du continuum de L1498. Ceci permettant de réduire à 12 dimensions l'espace des paramètres. L'exploration de cet espace de paramètre a été fait grâce à l'utilisation d'un méthode de minimisation MCMC. Grâce à cette exploration, nous avons obtenu HCN/HC 15 N = 338 ± 28 et HCN/H 13 CN = 45 ± 3. Les incertitudes sur ces valeurs sont limités par les erreurs de calibration et sont dé-terminés de manière non arbitraire par le méthode MCMC. Les implications de ces résultats sont discutées dans le chapitre de conclusion,où nous présentons également quelques perspectives sur l'avenir

    Reductive Catalytic Fractionation of Lignocellulosic Biomass: Unveiling of the Reaction Mechanism

    No full text
    International audienceThis work studied the reaction pathways involved in the depolymerization of cellulose and hemicellulose during the fractionation of lignocellulosic biomass using an isopropyl alcohol/water mixture as a solvent with the Raney-Ni catalyst. Model molecules such as cellulose and hemicellulose derived-products (glucose, sorbitol, erythrose, xylose, xylitol, glycerol) were used to understand the role of the catalyst on the depolymerization of these lignocellulosic fractions. The fractionation of sugar cane bagasse with the Raney-Ni catalyst was performed, a correlation between the different products formed, and the possible reaction pathways were proposed. The results obtained in this work show that the appropriate balance between hydrogenation and hydrogenolysis capacity might tune the selectivity to the desired product. It is important to notice that Raney-Ni is an unsupported catalyst. The support may add acidity, basicity, or redox properties that may play an important role in the determination of product distribution
    corecore